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Real Analysis II

The Concentration Compactness Principle

Let µj, j ≥ 1, be a family of Radon measures on Rn satisfying µj(Rn) = 1 for

all j. Here we are concerned with the convergence property of this family.

Theorem (Concentration Compactness Principle I) There exists a subse-

quence of {µj}, {µjk}, satisfying at least one of the following properties :

(a) For each ε > 0, there is some r and k0 such that

sup
x
µjk(Br(x)) < ε , k ≥ k0 .

(b) There exists {xk} such that, for each ε > 0, one can find an r so that

µjk(Br(xk)) > 1− ε , ∀k .

(c) There exists some λ ∈ (0, 1) so that, for each ε and r0 > 0, one can find

{xk} such that for each r′ > r0, there are Radon measures µ1
k, µ

2
k satisfying

µ1
k + µ2

k ≤ µjk , supp(µ1
k) ⊂ Br(xk) , supp(µ2

k) ∈ Rn \Br′(xk) ,

and

lim sup
k→∞

(∣∣λ− µ1
k(Rn)

∣∣+
∣∣(1− λ)− µ2

k(Rn)
∣∣) < ε .

The Levy function for µj is given by

Qj(r) = sup
x
µj(Br(x)) , r > 0 ,
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and we set Qj(r) = 0 for r ≤ 0. Each Qj(r) is an increasing function on (−∞,∞)

bounded between 0 and 1. Let νj be the Radon measure taking Qj as its distri-

bution function. We have νj(−∞, r) = Qj(r) for all r. Since νj(R) = 1, we may

pick a weakly convergent subsequence (theorem 1.41 in [EG]) and still denote it

by νj, so νj ⇀ ν as j → ∞. Let Q∗(r) be the distribution function of ν. Since

Q∗ is increasing, its discontinuity set is at most countable. It is of full measure.

Let C be its continuity set. For r ∈ C,

lim
j→∞

Qj(r) = Q∗(r) , (1)

see theorem 1.40 (iii). We let

λ = lim
r→∞

Q∗(r) ∈ [0, 1] .

Case (a) λ = 0. For each r > 0, we fix some r1 > r, r1 ∈ C, such that Q∗(r1) < ε.

Then there is some j0 such that Qj(r1) < ε for all j ≥ j0. Therefore,

Qj(r) ≤ Qj(r1) < ε , ∀j ≥ j0 ,

and (a) follows.

Case (b) λ = 1. We first determine {xj}. Indeed, from limr→∞Q
∗(r) = 1 we

fix some r0 ∈ C such that Q∗(r0) > 1/2. By (1) Qj(r0) > 1/2 for all j ≥ j0 for

some j0. Enlarge r0 if nec, we may assume indeed it holds for all j ≥ 1. Then

we can pick xj such that µj(Br0(xj)) > 1/2 for all j ≥ 1. Now {xj} has been

picked. Next, for ε ∈ (0, 1/2), we pick r1 and {yj} by a similar reasoning so that

µj(Br1(yj)) > 1− ε for all j. In view of

µj(Br0(xj)) + µj(Br1(yj) >
1

2
+ 1− ε > 1 ,
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Br1(yj) and Br0(xj) must intersect, so

Br1(yj) ⊂ Br(xj) , r = r0 + 2r1 .

It follows that

µ(Br(xj) ≥ µj(Br1(yj)) > 1− ε , ∀j ,

done.

Case (c) λ ∈ (0, 1). As λ = limr→∞Q
∗(r), for ε > 0, we can pick an r0 ∈ C such

that Q∗(r0) > λ−ε/2. Arguing as before we can find {xj} such that µj(Br0(xj)) >

λ−ε/2 , for all j. On the other hand, using the fact µ(Br(xj))→ 1 as r →∞, for

each j there is some rj > r0, rj →∞ as j →∞, satisfying µj(Brj(xj)) < λ+ε/2 ,

for all j. We set

µ1
j(E) = µj(E ∩Br0(xj)) , and µ2

j(E) = µj(E ∩ Rn \Brj(xj)) .

Then for each r′ > r0, the support of µ2
j is contained outside the ball Br′(xj) for

all sufficiently large j. We have

λ− µ1
j(Rn) = λ− µj(Br0(xj)) < λ− (λ− ε/2) = ε/2 .

Also

λ− µj(Br0(xj)) ≥ λ− µj(Brj(xj)) ≥ λ− (λ+ ε/2) = −ε/2 .

Next,

(1−λ)−µ2
j(Rn) = (1−λ)−µ2

j(Rn\Brj(xj)) = (1−λ)−(1−µj(Brj(xj))) < λ+ε/2−λ = ε/2 ,

and

(1− λ)− µ2
j(Rn \Brj(xj)) = −λ+ µj(Brj(xj)) ≥ −λ+ µj(Br0(xj)) > −ε/2 .
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We have completed the proof of the theorem.

The concentration-compactness principles were introduced by PL Lions in

ninety eighties in a series of papers. This version is taken from M Struwe ”Varia-

tional Methods” with some modifications. The reader may find many applications

of these principles in the original and subsequent papers.

Very roughly speaking, in the calculus of variations one deals with the mini-

mization of certain functionals of the form

J(f) =

∫
Rn

F (x, f(x),∇f(x))dLn(x) ,

subject to some constraints such as

∫
Rn

|f(x)|dLn(x) = 1 .

Under very general assumption on F , J(f) has a finite lower bound for all func-

tions f under consideration. Hence we can find {fj} such that

J(fj)→ inf {J(f) : f admissible } > −∞ , as j →∞ .

The key issue to establish the convergence of {fj} to a minimizer. A first move

is to view

µj(E) =

∫
E

|fj(x)|dLn(x)

as a sequence of probability measures. By the first concentration-compactness

principle, we can extract a subsequence which is again a minimizing sequence

fulfilling one of the three possibilities. In case we can exclude the first and the

third cases, µj would converge weakly to some probability measure µ. If we could

further show that µ << Ln, then µ = fLn and fj would converge weakly to some

L1-function f and this f is our candidate for the minimizer. The exclusion of
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cases (a) and (b) in the theorem depends on the function F which involves the

derivative of f . Other concentration-compactness principles come into play to

achieve this goal.
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